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EXPERIMENTAL INVESTIGATION OF THE VISCOSITY
OF PROPIONATES AT VARIOUS TEMPERATURES
AND PRESSURES

T. F. Klimova, K. D. Guseinov, UDC 536.2
and N. M. Bairamov

The dynamic viscosity of amyl and isoamyl propionates in the liquid and gaseous phases has been inves-
tigated for temperatures from 300 to 500°K and pressures of (0.1 to 50) - 1073 N/m?. Using a Tsvet-4 chromato-

graph it was found that the amyl and isoamyl propionate base materials used had purities of 99.8 and 99.9 wt.%,
respectively.

The viscosity of the ethers was studied by the viscometric method developed at the State Scientific-Re-
search Institute of the Nifrogen Industry. The capillary viscometer used had the following characteristics:

radius of capillary r =0.0926 cm, length of capillary ! =5.1093 cm, and volume of measuring vessel v=1.5728
cm3,

The viscosity measurements were performed along isotherms at 25-30° intervals. The values of 1 for
amyl and isoamyl propionates are shown in Table 1. Basic corrections were taken into account in calculating
7 from the experimental data. We determined the values of the density necessary to calculate the dynamic
viscosity by the method of hydrostatic weighing with an error of 0.1%. We estimated the error in determining
7, taking account of the reference, as +1.1%.

The experimental data confirmed the practicability of the Frenkel formula for the ethers studied. The
constants of this formula and the temperature range in which it satisfactorily describes the experimental data
were determined. Using the Golubev equation the functional dependence of the viscosity on the density and
thermal properties of the ethers was established,

TABLE 1. Dynamic Viscosity of Amyl Propionate and
Isoamyl Propionate 7 - 108(N - sec/m?)

Temp, T, | Pressure P, 10" N/m?
‘K io,l]s[mj‘m]ao[m[so

Amyl propionate

300 930 981 1040 1129 1244 {1343 | 1455
325 678 715 752 826 901 | 974 | 1048
350 475 517 559 6i8 678 | 736 | 80!
375 378 402 425 411 523 | 565 | 619
400 291 312 333 378 420 | 462 | 504
425 236 252 270 306 342 | 380 | 417
450 9,0 200 217 250 282 | 315 | 349
475 9,8 167 180 208 237 | 264 | 295
500 10,4 142 153 178 203 | 228 | 256

Isoamyl propionate

300 860 973 949 1039|1120 |1220 {1310
395 633 670 706 778 | 850 | 921 | 994
350 510 597 556 613 | 673 | 726 | 780
375 406 418 446 491 536 | 585 | 632
400 330 342 363 405 | 442 | 486 | 523
425 275 286 304 338 | 371 | 408 | 441
450 11,5 244 259 290 319 | 350 | 379
475 12,4 209 221 249 | 275 | 301 | 327
500 13,4 173 185 210 | 233 | 258 | 283
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Original article submitted October 12, 1976.
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DEPENDENCE OF DIELECTRIC PROPERTIES
OF CELLULOSE ON MOISTURE CONTENT
IN THE MICROWAVE REGION

N. N. Dergunov, R. K. Babichev, UDC 547.458.81:537.226:
M. 8. Ostrikov, and N, V. Dergunova 53.093:621.3.029.6

Results are presented of an experimental study of the dependence of the permittivity €' and the tangent
of the dielectric loss angle tand of cellulose on moisture content. The values of €' and tané were measured at
the maximum of a 10,000-MHz electric field. The permittivity €' increases with moisture content W at dif-
ferent rates in different regions. For low moisture contents €' increases slowly and linearly with W, and then
for moisture contents above 5% it increases considerably more rapidly. The tangent of the loss angle is maxi-
mum for a moisture content of 15% which, according to data determined by other independent methods (drying
thermograms, wetting heats, NMR method), corresponds to the maximum amount of water which can be ad-
sorbed by cellulose,

The construction of a measuring cell for studying the dependence of dielectric parameters of capillary
porous materials on moisture content is described.

Dep. 4097-77, September 26, 1977.
Original article submitted August 18, 1975.

TEMPERATURE COMPENSATION AND ESTIMATE
OF SENSITIVITY OF RESONATOR METHOD OF MEASURING
MOISTURE CONTENT OF LIQUID DIELECTRICS

V. I. Spiridonov and A, A. Dem'yanov UDC 617.621:533.275

The permittivity of nonpolar and weakly polar liquids and their aqueous emulsions decreases with in-
creasing temperature, leading to an increase in the resonant frequency of a resonator. A simultaneous increase
in the length and diameter of a resonator decreases its resonant frequency. If the change in the resonant fre-
quency of the resonator arising from the change in permittivity is the same as that from the change in its di-
mensions, the temperature of the liquid will not affect the value of the resonant frequency.

Taking account of the linear nature of the temperature dependence of the permittivity of a liquid, we have
used the method of small perturbations to derive an expression for calculating the necessary structural di-
mensions of a resonator and choosing the material for its construction so as to ensure temperature compensa-
tion. Relations were obtained for a cylindrical resonator with oscillations of the Hy,T type with its cavity par-
tially filled with the material under investigation.

The results obtained show that complete compensation is possible only for a definite moisture content of
the emulsion. The temperature error increases with increasing temperature and as the moisture content ex-
ceeds the nominal value. The temperature error increases with increasing relative sensitivity of the method
and is maximum for the method using complete filling of the resonator cavity with the liquid under investigation.
To decreasethe temperature error it is expedient to measure small moisture contents by partially filling the
resonator cavity with the liquid under investigation.

To estimate the effect of the position and thickness of the membrane on the measurements of moisture
content, a coefficient is introduced to characterize the sensitivity of the resonator method with partial filling
relative to the sensitivity of the method with complete filling. The relative sensitivity increases if the air —di-
electric boundary (in the presence of a dielectric membrane and without it) is at an antinode of the electric
field. The highest sensitivity can be obtained by using a quarter-wave dielectric membrane.
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Measurements showed that the sensitivity of the resonator method with partial filling is high, reaching
15 MHz per 1% moisture content for moisture contents up to 0.5%. The relative error in measuring moisture
content in this same range of moisture contents does not exceed 5% for temperature changes from 20 to 50°C.

Dep. 4099-77, October 7, 1977.
Original article submitted February 18, 1976.

DETERMINATION OF ADIABATIC EXPONENTS OF REAL
GASES AT HIGH PRESSURE.

II. ADIABATIC EXPONENTS AND DEPARTURE COEFFICIENTS OF AIR
AT PRESSURES UP TO 1000 BAR

A. M. Rozen, Ya. 8. Teplitskili, UDC 536.711
E. A, Tsukerman, and A. Z. Raiko

We present calculated values of the temperature and volume adiabatic exponents and graphs of the specif-
ic heats cpand cy, the departure coefficients up and pp, and the adiabatic exponents Ky and x as functions of
the pressure and temperature for air.

Choosing as the most reliable the equation given in {1],

0 = oy + T+ P+ w2

where ay, o4, B, and y are elementary functions depending only on the reduced density and the reduced tempera-

ture:
p=1lT; T= T/Tcr; @ = Vcr/V; o=21; Z=PV/RT,

after some simple transformations we obtained an equation in the form of a yirial series in inverse powers of
V and T in a form most convenient for machine calculations:
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Starting from this equation relations were derived and calculations were made of the departure coef-
ficients pp, B,y KTT, and Kpp for temperatures T =240-600°K and pressures P=25-1000 bar. The volume
and temperature adiabatic exponents Ky and  calculated from the expressions [2]

e o
ook 1 {cp — ARpabip) Kpp Gy  p—ARpp '

are tabulated and shown graphically. It is clear from Fig. 1 that the values of Ky increase substantially with
inereasing pressure and the isotherms become steeper as the critical region is approached. This indicates
that at high pressures the compressibility of the gas decreases and its properties approach those of a liquid.
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Fig. 1. Volume adiabatic exponent Ky, as a
function of pressure P, bar.
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The temperature adiabatic exponent « is relatively close to the ideal value for pressures up to 200 bar;
at higher pressures it decreases appreciably with decreasing temperature. Small changes of the temperature
adiabatic exponent with pressure make this quantity very convenient for thermodynamic caleulations,

LITERATURE CITED
1. Ya. Z. Kazavchinskii and A. A, Vasserman, "Equation of state for air,” Inzh.-Fiz. Zh., 3, No. 4 (1960).
2, A. M. Rozen, "Thermodynamic calculation of compression at high pressure," Zh. Prikl. Khim., No. 9
(1945).

Dep. 4098-77, September 12, 1977.
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INVESTIGATION OF THE P-p—-T RELATION FOR METHYL
HEXYL KETONE OVER A WIDE RANGE OF TEMPERATURES
AND PRESSURES

T. A. Apaev, A. M. Kerimov, UDC 536.2
and N. Kh, Dzhanakhmedov

We present experimental P—p —~T data on liquid methyl hexyl ketone for temperatures from 270 to 670°K
and pressures from 1 to 800 bar obtained for the first time by the method of hydrostatic weighing. The prob-
able error is estimated as + 0.1%.

Some of the experimental values of the density of methyl hexyl ketone are listed in Table 1,

Starting from the fact that sections of isotherms in p — P coordinates at constant densities p are recti-
linear to within + 0.12% in density over the whole range of temperatures and pressures encountered in the ex-
periment, the P—p —T data for methyl hexyl ketone were described by an equation of state of the form

P=A@+B@OT,
where A and B are functions of p; P is the pressure on the liquid, bar; T is the temperature, °K.

The coefficients A and B were found separately for each line p =const by the method of least squares,
Graphs of the functions A =f(v) and B=£(v), where v=1/p is the specific volume, have the shapes of a potential
curve and a hyperbola, respectively. This behavior of the functions A =f(v) and B=f(v) becomes clear if their
physical meaning is taken into account. As a matter of fact, it is easy to show that A =— (8¢/ dV), where ¢ is
the intermolecular interaction energy, V=puv is the molar volume, pu is the molecular mass, and B=(8p/ 8T)y.

Having an analytic expression for the function A =f(v), and taking account of the fact that the graph of this
function approaches the axis of specific volumes asymptotically, the intermolecular interaction energy for a
given v can be found from

= —-pfA(v) dv,

Yo

which permits the checking of other thermodynamic quantities.

TABLE 1.
«10=8 3
P, bar p 107, kg/m
T=273,15°K | 313,15 874,31 | 476,15 566,08 673,15
0,98 0,8338 0,8013 — — — —
50,06 0,8367 0,8050 0,7557 0,6621 — —_
99,11 0,8396 00,8085 0,7605 0,6736 0,5836 0,4452
197,21 0,8453 0,8150 0,7694 0,6915 0,6134 0,5182
295,31 0,8498 0,8218 0,7784 - 0,7061 0,6378 0,5550
393,41 0,8545 0,8278 0,7868 0,7182 0,6557 0,5825
491,51 0,8602 0,8340 0,7950 0,7290 0,6710 0,6048
589,61 0,8653 0,8403 0,8025 0,7393 0,6843 0,6220
687,71 0,8703 0,8462 0,8100 0,7491 0,6978 0,6370
785,81 0,8751 0,8520 0,8169 0,7581 0,7084 0,6510
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Original article submitted June 13, 1977.

NUMERICAL INVESTIGATION OF CERTAIN BASIC LOCAL
RADIATIVE HEAT-TRANSFER CHARACTERISTICS

IN A PRISMATIC CHAMBER OF RECTANGULAR CROSS
SECTION (RATIO OF SIDES OF BASE a : b =1.5)

Yu. V. Kurbakov, N. N. Nevskaya, UDC 536.241
V. L. Prokofrev, and Yu. A, Surinov

To obtain high-quality food products which are subjected to heat treatment in the manufacturing process,
it is important to know local as well as average values of radiative heat-transfer characteristics.

Local radiative heat-transfer characteristics were investigated numerically by the Yu. A, Surinov gen-
eralized zonal method.

The widespread use of the generalized method of determining local radiative heat-transfer characteris-
tics is deterred by the necessity of performing voluminous calculations with very cumbersome and complicated
formulas.

We have calculated radiative heat transfer in a chamber with a rectangular base. The height of the
chamber was varied from 0.1 to 10.0 (22 values) in relative units. Each side of the chamber was divided into

121 local portions.

A mixed formulation of the problem was considered: The net radiant flux on the lateral surfaces of the
chamber and the temperatures and emissivities of the upper and lower bases of the chamber were specified,
and the local distributions of radiant fluxes over the upper and lower bases of the chamber and the tempera-
ture over the lateral surface were determined. The emissivity of the bases was varied from 0.01 to 1.0 (six
values for each base).

The results obtained are presented in tables and graphs which can be used in engineering practice.

It can be seen from Egs. (1)-(3) that the main difficulty in the numerical computation of local energy
characteristics is the determination of the local angular resolving coefficients. Figure 12 shows the depen-
dence of the local angular resolving coefficients from points of the lower base to points on the upper base as a
function of the emissivity of the lower base,

The six calculated curves of Fig. 12 can be used to determine local angular resolving coefficients & (M,
Fy for radiating systems having N=1.0, 1.25, 1.5, 2.0 and L=0.5, 0.75, 1.0, 1.5, 2.0, 3,4, 5, 6,7, 8, 9, 10 with
an error of no more than 1.5-10%. I turned out that the error in using Fig. 12 is smaller, the smaller A, and
A,

Thus, it can be stated that for the indicated values of N and L, ¢ (My, Fg) is a function only of the emis~
sivity as is clear from the values of the dimensionless local density of the net radiation of zone 1 given in Table
6.

The constancy of & (My, Fy) for constant values of the emissivity appreciably simplifies the computation
of radiative heat transfer in a prismatic chamber of rectangular cross section.

The work is designed to supply reference material for the engineering solution of radiative heat-transfer
problems in a chamber of rectangular cross section.

Dep. 4497-77, August 2, 1977.
Original article submitted August 2, 1977.
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SOLUTION OF A SYSTEM OF DIFFERENTIAL EQUATIONS
FOR MOLECULAR TRANSPORT WITH N COUPLED FLUXES

Yu. A, Timofeev UDC 536.24:681.3

We present the solution of a system of transport differential equations with N coupled fluxes:

A%, )
Vath 5= =§akiA8i+ fu, k=1,2, ..., N,

b (T Dpg = () x€ G M3 (1, A)lp =u(y, ©), v,

where

a%,
M (% (5, 0)llp = & 4 B%, oaf =0, az+ f220.

Using specially constructed functions which satisfy the conditions for the expansion of an arbitrary func-
tion in a series of eigenfunctions of the Laplacian operator [1] which is uniformly and absolutely convergent in
a closed interval G, and using 2], we obtain an explicit solution of the problem.

The coefficients in the series giving the solution contain all the parameters of the problem explicitly, and
the series have the maximum possible rate of convergence for a given smoothness of the functions fi., 7k, and

P k-
LITERATURE CITED

1. V. A. I'in, Matem. Sb., 45, No. 2 (1958).
2. D. K. Kaupov, in: Differential Equations [in Russian], Nauka, Alma-Ata (1967).
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HEAT CONDUCTION FOR A HALFSPACE WITH VARIABLE
COEFFICIENTS AND MIXED BOUNDARY CONDITIONS
OF THE SECOND AND THIRD KINDS

V. M. Khorol'skii UDC 536.21

We consider the heat-conduction equation

6t=u)A9—:—59_x+a6y+yG+-%‘Y, Mecu, >0 )

with mixed boundary conditions
A, (N, =gV, 1), N¢S=2—5 2)
—AO, (N, ) =a (N, Y8 (N, ) —B (N, )], Ne§ @)

and initial conditions 6 (M, 0) =u (M), Mcu, where u is the halfspace z =0; Q is the plane z =0; S is a certain
domain on the boundary of the body ; M=(x, y, z); N=(x, ¥, 0}; w, A, «, and B8 are constants; y=y(t) is an
arbitrary function of time; A is the Laplacian operator. We define a new unknown function v by the relation

8 —vexp [H (N, O)]; 4)

H 2 2
H (N, t)=—ﬁ[ﬁx+ay]+”v(t)— B ::ma ]df-
0

Then Eq. (1) takes the form
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v = 0Av + %‘I’e""; v(M, 0) =pn(M) e~ HN.0), (5)

The heat flux on the boundary of the region Q
— MLV, ) =g(N, 1), —Av, (N, £) = g(N, 1) e 1H:0)

is known only in the domain S; it is to be determined in the domain S.

On the basis of the theory of heat potentials we first write the general solution of Eq. (5) in terms of the
heat flux (N, t), and then use (4) to find the general solution of Eq. (1):
b4
O(M, ) =DM, z)¢~j d‘rjq(’vo, )G (M, No, £, T) dS. ®)
0 S

Here (M, t) is a known function; Ny, =(x, ¥,, 0)¢ S; G(M, My, t, 7) =c*, M, t-T)exp[H(N, t)—H(N,, N]; M, =
(Xps Yo Zg)€U; G¥(M, My, t, 7) is the Green function of the second kind for the halfspace dS = dxdy,. Setting

=N in Eq. (5) and using boundary conditions (2) and (3), we obtain an integral equation of the Volterra type in
the time and of the Fredholm type in the coordinates for the heat flux of q(N, t)

H
gV, ) =F (N, ) + % aW, ) j'dr jq (Vo TG (N, No, £, 1) dS. 0
] s

The kernel of this integral equation has a removable singularity in the time and consequently can be solved by
the method of successive approximations. The method of successive approximations involves multiple integra-
tion which severly limits the computational possibilities of the method. We use a more convenient approximate
method of solving Eq. (7) which leads to triangular type recurrence relations.

The method presented for solving heat-conduction problems for a halfspace with variable heat-transfer
coefficients and mixed boundary conditions can be extended to other bodies for which the Green function is
known.

Dep. 9-78, October 28, 1977.
Original article submitted December 2, 1976.

ESTIMATE OF ACCURACY OF NUMERICAL COMPUTATION
OF ANALYTIC SOLUTIONS OF UNSTEADY
HEAT-CONDUCTION PROBLEMS

A. A. Skvortsov and E. G. Rostovtsev UDC 536.2.02

Using the asymptotic formulas for Bessel functions of large argument, and applying the methods of dif-
ferential calculus, we have estimated the absolute magnitude of the remainder of the functional series appear-
ing in the analytic solutions of heat-conduction problems for unbounded plates and cylinders (including the
asymmetric heating of a plate for boundary conditions of the third kind and the heating of a hollow cylinder) for
boundary conditions of the first, second, and third kinds.

For a boundary condition of the fourth kind the numerical computation of the solution for an unbounded
plate is reduced to the use of tabulated functions. For an unbounded cylinder in an unbounded medium the im-
proper integral appearing in the solution [1] is broken up into three integrals:

£ © p P o

j. J1 (n) ( jd J- Js j 5.
5 — exp | —u? = =y =1—1-=1.

gy o [¢ (u) w (W} \ ¢y 8 Y ¥

Since the limits of integration of the original integral are singular points, the problem is reduced to
choosing p and P so that the absolute magnitude of the first and third integrals of the sum does not exceed a

preassigned value.



The relations obtained permit the determination of the number of terms of the corresponding functional
series or the choice of the limits of integration for the improper integral so as to ensure the required ac-
curacy of the numerical computation.

LITERATURE CITED
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